Exercise 43

A particle moves along a straight line with equation of motion $s=f(t)$, where s is measured in meters and t in seconds. Find the velocity and the speed when $t=4$.

$$
f(t)=80 t-6 t^{2}
$$

Solution

The velocity is the derivative of $s=f(t)$.

$$
\begin{aligned}
f^{\prime}(t) & =\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[80(t+h)-6(t+h)^{2}\right]-\left[80 t-6 t^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[80(t+h)-6\left(t^{2}+2 t h+h^{2}\right)\right]-80 t+6 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(80 t+80 h-6 t^{2}-12 t h-6 h^{2}\right)-80 t+6 t^{2}}{h} \\
& =\lim _{h \rightarrow 0} \frac{80 h-12 t h-6 h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(80-12 t-6 h) \\
& =80-12 t
\end{aligned}
$$

Therefore, the velocity when $t=4$ is

$$
f^{\prime}(4)=80-12(4)=32 \frac{\mathrm{~m}}{\mathrm{~s}},
$$

and the speed when $t=4$ is

$$
\left|f^{\prime}(4)\right|=|32|=32 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

